INTERNATIONAL ISO/IEC
STANDARD 13211-2

First edition
2000-06-01

Information technology — Programming
languages — Prolog —

Part 2:
Modules

Technologies de l'information — Langages de programmation — Prolog —
Partie 2: Modules

Adopted by INCITS (InterNational Committee for Information Technology Standards) as an American National Standard.
Date of ANSI Approval: “November 19, 2007

Published by American National Standards Institute,
25 West 43rd Street, New York, New York 10036

Copyright 2002 by Information Technology Industry Council (ITl).
All rights reserved.

These materials are subject to copyright claims of International Standardization Organization (ISO), International
Electrotechnical Commission (IEC), American National Standards Institute (ANSI), and Information Technology Industry Council
(I'TI). Not for resale. No part of this publication may be reproduced in any form, including an electronic retrieval system, without
the prior written permission of ITI. All requests pertaining to this standard should be submitted to ITI, 1250 Eye Street NW,
Washington, DC 20005.

Printed in the United States of America

Reference number
ISO/IEC 13211-2:2000(E)

© |SO/IEC 2000

ISO/IEC 13211-2:2000(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not
be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this
file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this
area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters
were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event
that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2000

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic
or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body
in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +4122749 01 11

Fax +41227341079

E-mail copyright@iso.ch

Web www.iso.ch

Printed in Switzerland

ii © ISO/IEC 2000 — All rights reserved

ISO/IEC 13211-2:2000(E)

Contents Page
Foreword v
Introduction vi
1 S0P . . o e 1
U S 0 1

2 Normative reference 1
3 Terms and definitions 1
4 Compliance. 3
4.1 Prolog PrOCESSOT . . o o v vt ittt e e e e e e e e e e e 3
4.2 Module teXt 3
4.3 Prolog g0al 3
4.4 Prolog modules 3
4.4.1 Prolog text without modules e 3

4.4.2 The MOAUIE USET oottt et et e e e e e e e e e 4

4.5 DOCUMENEALION . . . o vttt ettt e et et e e e e e e e e e e e e e e e 4
4.5.1 Dynamic Modules e 4

4.5.2 Inaccessible Procedures 4

S OSYRtAX . .o 4
S0 MOdUIE TEXE . . .ottt et e e e e e e 4
5.2 TS . o oottt e 4
521 OPEIatOrS . . o v vttt e et 4

6 Language concepts and semantics 4
6.1 Related termsot e 5
6.1.1 Qualified and unqualified terms 5

6.2 MOdUIE TEXE . . o o ettt e e e 5
6.2.1 Module USEr 5

6.2.2 Procedure Visibility 5

6.2.3 Module interface 5

6.2.4 Module dir€CtiVESottt e e 6

6.2.5 Module body 7

6.2.6 ClaUSES ottt 7

6.3 Complete database 8
6.3.1 Visible database 8

6.3.2 Examples 8

6.4 Context sensitive PrediCatesttt e e 8
6.4.1 Metapredicate built-ins. 8

6.4.2 Context sensitive bUilt-INS e 9

6.4.3 Module name eXpanSiONttt e 9

6.4.4 Examples: Metapredicatesttt e 9

6.5 Converting a term to a clause, and a clause to @ teIm ittt 10
6.5.1 Converting a term to the head of a clause 10

6.5.2 Converting a module qualified term to a body i 10

6.5.3 Converting the body of a clause to @ term.ttt 11

6.6 Executing a Prolog goal 12

© ISO/IEC 2000 — All rights reserved iii

ISO/IEC 13211-2:2000(E)

6.6.1 Data types for the execution model 12
6.6.2 Initialization 12
6.6.3 Searching the complete database e 13
6.6.4 Selecting a clause for XECUtION.ttt 13
6.6.5 Backtracking 14
6.6.6 Executing a user-defined procedure: 14
6.6.7 Executing a built-in predicate 14

6.7 Executing a control CONSIIUCEottt ettt et e e e e e e e e 14
6.7.1 call/l .. 14
6.7.2 catch/3 . . 15
6.7.3 throw/l . . oo 15

6.8 Predicate Properties.ttt ettt e e 16
6.9 Flags 16
6.9.1 Flag: colon_sets_calling_CONtEXtttt et 16
600 ErrOrs . .o oo 16
6.10.1 Error classification. 16

7 Built-in predicates 16
7.1 The format of built-in predicate definitions 16
7.0.1 Type of an arQUMENt oottt e e 16

7.2 Module prediCatesttt e 16
7.2.1 current_module/l 17

7.2.2 predicate property/2 e 17

7.3 Clause retrieval and information 18
T30 Clause/2 . .o 18
7.3.2 current_predicate/1 19

7.4 Database access and modification 20
TAL assertall ... 20
TA2 assertz/] . . o 21

TA3 retract/l ... 21
T4 abolish/l 22

iv © ISO/IEC 2000 — All rights reserved

ISO/IEC 13211-2:2000(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized
system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International
Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and
IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.
In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard

requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 13211 may be the subject of patent rights. ISO and IEC
shall not be held responsible for identifying any or all such patent rights.

International Standard ISO/IEC 13211-2 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

ISO/IEC 13211 consists of the following parts, under the general title Information technology — Programming languages — Prolog:
— Part 1: General core

— Part 2: Modules

© ISO/IEC 2000 — All rights reserved \%

ISO/IEC 13211-2:2000(E)

Introduction
This is the first International Standard for Prolog, Part 2 (Modules). It was produced on May 1, 2000.

Prolog (Programming in Logic) combines the concepts of logical and algorithmic programming, and is recognized
not just as an important tool in AI (Artificial Intelligence) and expert systems, but as a general purpose high-level
programming language with some unique properties.

The language originates from work in the early 1970s by Robert A. Kowalski while at Edinburgh University (and ever
since at Imperial College, London) and Alain Colmerauer at the University of Aix-Marseilles in France. Their efforts
led in 1972 to the use of formal logic as the basis for a programming language. Kowalski’s research provided the
theoretical framework, while Colmerauer’s gave rise to the programming language Prolog. Colmerauer and his team then
built the first interpreter, and David Warren at the Al Department, University of Edinburgh, produced the first compiler.

The crucial features of Prolog are unification and backtracking. Unification shows how two arbitrary structures can be
made equal, and Prolog processors employ a search strategy which tries to find a solution to a problem by backtracking
to other paths if any one particular search comes to a dead end.

Prolog is good for windowing and multimedia because of the ease of building complex data structures dynamically, and
also because the concept of backing out of an operation is built into the language. Prolog is also good for interactive
web applications because the language lends itself to both the production and analysis of text, allowing for production
of HTML ‘on the fly’.

This International Standard defines syntax and semantics of modules in ISO Prolog. There is no other International
Standard for Prolog modules.

Modules in Prolog serve to partition the name space and support encapsulation for the purposes of constructing large
systems out of smaller components. The module system is procedure-based rather than atom-based. This means that
each procedure is to be defined in a given name space. The requirements for Prolog modules are rendered more
complex by the existence of context sensitive procedures.

vi © ISO/IEC 2000 — All rights reserved

INTERNATIONAL STANDARD

ISO/IEC 13211-2:2000(E)

Information technology — Programming languages —

Prolog — Part 2: Modules

1 Scope

This part of ISO/IEC 13211 is designed to promote the
applicability and portability of Prolog modules that contain
Prolog text complying with the requirements of the Programming
Language Prolog as specified in this part of ISO/IEC 13211.

This part of ISO/IEC 13211 specifies:

a) The representation of Prolog text that constitutes a Prolog
module,

b) The constraints that shall be satisfied to prepare Prolog
modules for execution, and

¢) The requirements, restrictions and limits imposed on a
conforming Prolog processor that processes modules.

This part of ISO/IEC 13211 does not specify:

a) The size or number of Prolog modules that will exceed the
capacity of any specific data processing system or language
processor, or the actions to be taken when the limit is
exceeded,

b) The methods of activating the Prolog processor or the
set of commands used to control the environment in which
Prolog modules are prepared for execution,

¢) The mechanisms by which Prolog modules are loaded,

d) The relationship between Prolog modules and the
processor-specific file system.

1.1 Notes

Notes in this part of ISO/IEC 13211 have no effect on the
language, Prolog text, module text or Prolog processors that are
defined as conforming to this part of ISO/IEC 13211. Reasons
for including a note include:

a) Cross references to other clauses and subclauses of this
part of ISO/IEC 13211 in order to help readers find their
way around,

b) Warnings when a built-in predicate as defined in this part
of ISO/IEC 13211 has a different meaning in some existing
implementations.

2 Normative reference

The following normative document contains provision which,
through reference in this text, constitute provisions of this part of
ISO/IEC 13211. For dated references, subsequent amendments to,
or revisions of, any of these publications do not apply. However,
parties to agreements based on this part of ISO/IEC 13211 are
encouraged to investigate the possibility of applying the most

© ISO/IEC 2000 — All rights reserved

recent edition of the normative document indicated below. For
undated references, the latest edition of the normative document
referred to applies. Members of ISO and IEC maintain registers of
currently valid International Standards.

ISO/IEC 13211-1 : 1995, Information technology — Program-
ming languages — Prolog Part 1: General core.

3 Terms and definitions

The terminology for this part of ISO/IEC 13211 has a format
modeled on that of ISO 2382.

An entry consists of a phrase (in bold type) being defined,
followed by its definition. Words and phrases defined in the
glossary are printed in italics when they are defined in ISO/IEC
13211-1 or other entries of this part of ISO/IEC 13211. When
a definition contains two words or phrases defined in separate
entries directly following each other (or separated only by a
punctuation sign), * (an asterisk) separates them.

Words and phrases not defined in the glossary are assumed to
have the meaning given in ISO 2382-15 and ISO/IEC 13211-1;
if they do not appear in ISO 2382-15 or ISO/IEC 13211-1, then
they are assumed to have their usual meaning.

A double asterisk (**) is used to denote those definitions where
there is a change from the meaning given in ISO/IEC 13211-1.

3.1 accessible procedure: See 3.39 — procedure, accessible.

3.2 activation, of a procedure: A procedure has been
activated when it is called for execution.

3.3 argument, qualified: A qualified term which is an
argument in a module name qualified * predication.

3.4 calling context: The set of visible procedures, the operator
table, the character conversion mapping and Prolog flag values
denoted by a module name, and used as a context for activation
of a context sensitive procedure.

3.5 database, visible: The visible database of a module M
is the set of procedures that can be activated without module
name qualification from within M.

3.6 defining module: See 3.23 — module, defining.

3.7 export: To make a procedure of an exporting module
available for import or re-export by other modules.

3.8 exported procedure: See 3.41 — procedure, exported.

ISO/IEC 13211-2:2000(E)

3.9 import: To make procedures * exported or re-exported
by a module * visible in an importing or re-exporting module.

3.10 import, selective: The importation into a module of only
certain explicitly indicated procedures * exported or re-exported
by a module (see 6.2.5.2).

3.11 load (a module): Load the module interface of a module
and correctly prepare all its bodies, if any, for execution.

NOTE — The interface of a module shall be loaded before any body
of the module (see 6.2.3).

3.12 load (a module interface): Correctly prepare the module
interface of the module for execution.

3.13 lookup module: See 3.29 — module, lookup.

3.14 meta-argument: An argument in a metaprocedure which
is context sensitive.

3.15 metapredicate: A predicate denoting a metaprocedure.

3.16 metapredicate directive: A directive stipulating that a
procedure is a metapredicate.

3.17 metapredicate mode indicator: Either a predicate indi-
cator or a compound term each of whose arguments is ‘:’, or
%1 (see 6.1.1.4).

3.18 metaprocedure: A procedure whose actions depend on
the calling context, and which therefore carries augmented
module information designating this calling context.

3.19 metavariable: A variable occurring as an argument
in a metaprocedure which will be subject to module name
qualification when the procedure is activated.

3.20 module: A named collection of procedures and directives
together with provisions to export some of the procedures and
to import and re-export * procedures from other modules.

3.21 module body: A Prolog text containing the definitions
of the procedures of a module together with import and other
directives local to that module body.

3.22 module, calling (of a procedure): The module in which
a corresponding activator is executed.

3.23 module, defining: The module in whose module body
(or bodies) a procedure is defined explicitly and entirely.

3.24 module directive: A ferm D which affects the meaning
of module text (6.2.4), and is denoted in that module text by a
directive-term :- (D) ..

2

3.25 module, existing: A module whose interface has been
prepared for execution (see 6.2.3).

3.26 module, exporting: A module that makes available
procedures for import or re-export by other modules.

3.27 module interface: A sequence of read-terms which
specify the exported and re-exported procedures and exported *
metapredicates of a module.

3.28 module, importing: A module into which procedures
are imported, adding them to the visible database of the module.

3.29 module, lookup: The module where search for clauses
of a procedure takes place.

NOTE — The lookup module defines the visible database of procedures
accessible without module name qualification (see 6.1.1.3).

3.30 module name: An atom identifying a module.

3.31 module name qualification: The qualification of a term
with a module name.

3.32 module, qualifying: See 6.1.1.3 — Qualifying mod-
ule, lookup module and defining module.

3.33 module, re-exporting: A module which, by re-
exportation,* imports certain procedures and exports these
same procedures.

3.34 module text: A sequence of read-terms denoting direc-
tives, module directives and clauses.

3.35 module, user: A module with name user containing
all user-defined procedures that are not specified as belonging
to a specific module.

3.36 predicate **: An identifier or qualified identifier together
with an arity.

3.37 predicate name, qualified: The qualified identifier of a
predicate.

3.38 preparation for execution: Implementation dependent
handling of both Prolog text and module text by a processor
which results, if successful, in the processor being ready to
execute the prepared Prolog text or module text.

3.39 procedure, accessible: A procedure is accessible if it
can be activated with module name qualification from any
module which is currently loaded.

© ISO/IEC 2000 — All rights reserved

3.40 procedure, context sensitive: A procedure is context
sensitive if the effect of its execution depends on the calling
context in which it is activated.

3.41 procedure, exported: A procedure that is made available
by a module for import or re-export by other modules.

3.42 procedure, visible (in a module M): A procedure
that can be activated from M without using module name
qualification.

3.43 process **: Execution activity of a processor running
prepared Prolog text and module text to manipulate conforming
Prolog data, accomplish side effects and compute results.

3.44 prototype: A compound term where each argument is
a variable.

3.45 prototype, qualified: A qualified term whose first
argument is a module name and second argument is a prototype.

3.46 qualification: The textual replacement (6.4.3) of a term
T by the term M:T where M is a module name.

3.47 qualified argument: See 3.3 — argument, qualified
3.48 qualified term: See 3.51 - term, qualified.

3.49 re-export: To make procedures * exported by a module
* visible in the re-exporting module, while at the same time
making them available for import or re-export by other modules
from the re-exporting module.

3.50 re-export, selective: The re-exportation by a re-exporting
* module of certain indicated procedures * exported from another
module (see 6.2.4.3).

3.51 term, qualified: A term whose principal functor is

(:)/2.

3.52 visible procedure (in a module M): See 3.42 — procedure,
visible.

3.53 visible database (of a module M): See 3.5 — database,
visible.

4 Compliance
4.1 Prolog processor

A conforming processor shall:

a) Correctly prepare for execution Prolog text and module
text which conforms to:

© ISO/IEC 2000 — All rights reserved

ISO/IEC 13211-2:2000(E)

1) the requirements of this part of ISO/IEC 13211,
including the requirements set out in ISO/IEC 13211-1
General Core, whether or not the text makes explicit use
of modules, and

2) the implementation defined and implementation specific
features of the Prolog processor,

b) Correctly execute Prolog goals which have been prepared
for execution and which conform to:

1) the requirements of this part of ISO/IEC 13211 and
ISO/IEC 13211, and

2) the implementation defined and implementation specific
features of the Prolog processor,

c) Reject any Prolog text, module text or read-term whose
syntax fails to conform to:

1) the requirements of this part of ISO/IEC 13211 and
ISO/IEC 13211, and

2) the implementation defined and implementation specific
features of the Prolog processor,

d) Specify all permitted variations from this part of ISO/IEC
13211 and ISO/IEC 13211 in the manner prescribed by this
part of ISO/IEC 13211 and ISO/IEC 13211, and

e) Offer a strictly conforming mode which shall reject the
use of an implementation specific feature in Prolog text,
module text or while executing a goal.

4.2 Module text

Conforming module text shall use only the constructs specified
in this part of ISO/IEC 13211 and ISO/IEC 13211-1, and
the implementation defined and implementation specific features
supported by the processor.

Strictly conforming module text shall use only the constructs
specified in this part of ISO/IEC 13211 and ISO/IEC 13211-1,
and the implementation defined features specified by this part
of ISO/IEC 13211.

4.3 Prolog goal

A conforming Prolog goal is one whose execution is defined
by the constructs specified in this part of ISO/IEC 13211
and ISO/IEC 13211-1, and the implementation defined and
implementation specific features supported by the processor.

A strictly conforming Prolog goal is one whose execution is
defined by constructs specified in this part of ISO/IEC 13211

and ISO/IEC 13211-1, and the implementation defined features
specified by this part of ISO/IEC 13211.

4.4 Prolog modules
4.4.1 Prolog text without modules

A processor supporting modules shall be able to prepare and
execute Prolog text that does not explicitly use modules. Such

3

ISO/IEC 13211-2:2000(E)

text shall be prepared and executed as the body of the required
built-in module named user.

4.4.2 The module user

A Prolog processor shall support a built-in module user.
User-defined procedures not defined in any particular module
shall belong to the module user.

4.5 Documentation

A conforming Prolog processor shall be accompanied by docu-
mentation that completes the definition of every implementation
defined implementation specific features (if any) specified in
this part of ISO/IEC 13211and ISO/IEC 13211-1.

4.5.1 Dynamic Modules

A Prolog processor may support additional implementation
specific procedures that support the creation or abolition of
modules during execution of a Prolog goal.

4.5.2 Inaccessible Procedures

A Prolog processor may support additional features whose effect

is to make certain procedures defined in the body of a module
not accessible from outside the module.

5 Syntax

This clause defines the abstract syntax of Prolog text that
supports modules. The notation is that of ISO/IEC 13211-1.

Clause 5.1 defines the syntax of module text. Clause 5.2 defines
the role of the operator ‘:’.

5.1 Module text
Module text is a sequence of read-terms which denote (1)
module directives, (2) interface directives, (3) directives, and (4)

clauses of user-defined procedures.

The syntax of a module directive and of a module interface
directive is that of a directive.

module text = m text ;
Abstract: mt mt

m text = directive term, m text ;

Abstract: d-t d t

m text = clause term, m text ;

Abstract: c-t c t
m text = ;

Abstract: nil

4

Table 1 — The initial operator table

Priority ~ Specifier ~ Operator(s)
1200 xfx t- - >
1200 fx R
1100 xfy ;
1050 xfy ->
1000 xfy ,
900 fy \+
700 xfx = \=
700 xfx == \== @< @=< @> @>=
700 xfx =..
700 xfx is =:= =\= < =< > >=
600 xfy :
500 vix + - /\N\/
400 yvEx * / // rem mod << >>
200 xfx * ok
200 xfy "
200 fy -\

Clause 6.2.4 defines the module directives and the module
interface directives. Clause 6.2.5 defines directives in addition
to those of ISO/IEC 13211-1 that can appear in a module body
and their meanings.

5.2 Terms
5.2.1 Operators

The operator table specific to a module M defines which atoms
will be regarded as operators in the context of the given module
module M when (1) a sequence of tokens is parsed as a read-term
by the built-in predicate read_term/3 or (2) Prolog text is
prepared for execution or (3) output by the built-in predicates
write_term/3, write_term/2, write/l, write/2,
writeqg/1l, writeq/2.

The effect of the directives op/3, char_conversion/2
and set_prolog_flag/2 in modules with multiple bodies is
described in 6.2.5.4.

Table 1 defines the predefined operators. The operator *:’ is
used for module qualification.

NOTES

1 This table is the same as table 7 of ISO/IEC 13211-1 with the
single addition of the operator °:’

2 When used in a predicate indicator or predicate name ‘’ is an
atom qualifier. This means that a predicate name can be a compound
term provided that the functor is *:’

3 The operator table can be changed both by the use of the module
interface directive op/3 and by the module directive op/3 in the
body of a module.

6 Language concepts and semantics

This clause defines the semantic concepts of Prolog with
modules.

a) Subclause 6.1 defines the qualifying module and unqual-
ified term associated with a qualified term,

© ISO/IEC 2000 — All rights reserved

b) Subclause 6.2 defines the division of module text into
Prolog modules,

c) Subclause 6.2.6 defines the relationship between clauses
in module text and in the complete database,

d) Subclause 6.3 defines the complete database and its
relation to Prolog modules,

e) Subclause 6.4 defines metapredicates and the process of
name qualification,

f) Subclause 6.5 defines the process of converting terms to
clauses and vice versa in the context of modules,

g) Subclause 6.6 defines the process of executing a goal in
the presence of module qualification,

h) Subclause 6.7 defines the process of executing a control
construct in the presence of module qualification.

i) Subclause 6.8 defines predicate properties,

j) Subclause 6.9 defines required flags in addition to those
required by ISO/IEC 13211-1.

k) Subclause 6.10 defines errors in addition to those required
by ISO/IEC 13211-1.

6.1 Related terms

This clause extends the definitions of clause 7.1 of ISO/IEC
13211-1.

6.1.1 Qualified and unqualified terms
6.1.1.1 Qualified terms

A qualified term is a term whose principal functor is (:) /2.

6.1.1.2 Unqualified terms

An unqualified term is a term whose principal functor is not

(:)/2.

6.1.1.3 Qualifying module

Given a module M and a term T, the associated qualifying
module QM = gm(M:T) and associated unqualified term UT =
ut (M:T) of (M:T) are defined as follows:

a) If the principal functor of T is not (:)/2 then gm (M:T)
is M and ut (M:T) is T;

b) If the principal functor of T is (:)/2 with first argument
MM, and second argument TT, then gm (M:T) is the qualifying
module of gm (MM:TT), and ut (M:T) is the unqualified
term ut (MM:TT).

6.1.1.4 Metapredicate mode indicators
A metapredicate mode indicator is either a predicate indicator or
a compound term M_Name (Modes) each of whose arguments

is ‘7 or ¥,

© ISO/IEC 2000 — All rights reserved

ISO/IEC 13211-2:2000(E)

If the flag colon_sets_calling.context 6.9.1 is true
shall be a compound term each of whose arguments is ‘:’ or
“*’_ In this case an argument whose position corresponds to a
‘’ is a meta-argument, and an argument corresponding to ‘*’
shall not be a meta-argument.

6.2 Module text

Module text specifies one or more user-defined modules and the
required module user. A module consists of a single module
interface and zero or more corresponding bodies. The interface
shall be prepared for execution before any of the bodies. Bodies
may be separated from the interface. If there are multiple
bodies, they need not be contiguous.

The heads of clauses in module text shall be implicitly module
qualified only by the module body in which they appear, not
by explicit qualification of the clause head.

Every procedure that is neither a control construct nor a
built-in predicate belongs to some module. Built-in predi-
cates and control constructs are visible everywhere and do
not require module qualification, except that if the flag
colon_sets_calling.context 6.9.1 is true the builtin
metapredicates (6.4.1) , the context sensitive builtins 6.4.2 and
call/1 and catch/3 may be module qualified for the purpose
of setting the calling context.

6.2.1 Module user

The required module user contains all user-defined procedures
not defined within a body of a specific module. It has by default
an empty module interface. However, module text may contain
an explicit interface for module user. Any such interface
must be loaded before any Prolog text belonging to the module
user.

NOTE — An explicit interface for module user enables procedures
to be exported from module user to other modules and allows
metapredicates to be defined in module user.

6.2.2 Procedure Visibility

All procedures defined in a module are accessible from any
module by use of explicit module qualification. It shall be an
allowable extension to provide a mechanism that hides certain
procedures defined in a module M so that they cannot be
activated, inspected or modified except from within a body of
the module M.

A module shall not make visible by import or re-export two or
more procedures with a given (unqualified) predicate indicator
defined in different modules. If a procedure with (unqualified)
predicate indicator PI from the complete database is visible in
M no other procedure with the same predicate indicator shall be
made visible in M.

NOTE — More than one import or re-export directive may make
visible a single procedure in a module.

6.2.3 Module interface

A module interface in module text specifies the name of the
module, the operators, character conversions and Prolog flag

5

ISO/IEC 13211-2:2000(E)

values that shall be used when the processor begins to prepare
for execution the bodies of the module, and the user-defined
procedures of a module that are

a) exported from the module,
b) re-exported from the module, and
c) defined to be metapredicates by the module.

A sequence of directives shall form the module interface of the
module with name Name if :

a) The first directive is a directive module (Name).
(6.24.1)

b) The last directive is a directive end_module (Name) .
(6.2.4.9)

c¢) Each other element of the sequence is a module interface
directive. (6.2.4.2 through 6.2.4.8)

The interface for a module Name shall be loaded before any
body of the module.

6.2.4 Module directives

Module directives are module text which serve to 1) separate
module text into the individual modules, and 2) define operators,
character conversions and flag values that apply to the preparation
for execution of the bodies of the corresponding module.

6.2.4.1 Module directive module/1

The module directive module (Name) specifies that the interface
text bracketed by the directive and the matching closing interface
directive end-module (Name) defines the interface to the
Prolog module Name.

6.2.4.2 Module interface directive export/1

A module interface directive export (PI) in the module
interface of a module M, where PI is a predicate indicator,
a predicate indicator sequence or a predicate indicator list,
specifies that the module M makes the procedures designated by
PI available for import into or re-export by other modules.

A procedure designated by PI in a export (PI) directive
shall be that of a procedure defined in the body (or bodies) of
the module M.

No procedure designated by PI shall be a control construct, a
built-in predicate, or an imported procedure.

NOTE — Since control constructs and built-in predicates are visible

everywhere they cannot be exported.

6.2.4.3 Module interface directive reexport/2

A directive reexport (M, PI) in the interface of a module MM
where M is an atom and PTI is a predicate indicator, a predicate
indicator sequence or a predicate indicator list specifies that
the module MM imports from the module M all the procedures

6

designated by PI, and that MM makes these procedures available
for import or re-export (from MM) by other modules.

A procedure designated by PI in a reexport (M, PI) directive
shall be that of a procedure exported or re-exported by the
module M.

No procedure designated by PI shall be a control construct or
a built-in predicate.

6.2.44 Module interface directive reexport/1

A module interface directive reexport (PI) in the module
interface of a module M, where PI is an atom, a sequence of
atoms, or a list of atoms specifies that the module M imports
all the user defined procedures exported or re-exported by the
modules designated by PI and that M makes these procedures
available for import into or re-exportation by other modules.

6.2.4.5 Module interface directive metapredicate/1

A module interface directive metapredicate (MI) in the
module interface of a module M, where MI is a metapredicate
mode indicator, a metapredicate mode indicator sequence, or
a metapredicate mode indicator list specifies that the module
defines and exports the metaprocedures designated by MI.

6.2.4.6 Module interface directive op/3

A module interface directive op (Priority, Op_specifier,
Operator) in the module interface of a module M enables
the initial operator table to be altered only for the preparation
for execution of all the bodies of the module M.

The arguments Priority, Op-specifier, and Operator
shall satisfy the same constraints as for the successful execution
of the built-in predicate op/3 (8.14.3 of ISO/IEC 13211-1) and
the initial operator table of the module shall be altered in the
same way.

Operators defined in a module interface directive
op (Priority, Op_specifier, Operator) shall not
affect the syntax of read terms in Prolog and module texts other
than the bodies of the corresponding module.

6.2.4.7 Module interface directive char_conversion/2

A module interface directive char_conversion (In_char,
Out_char) in the module interface of a module M enables
the initial character conversion mapping Convc (see 3.29 of
ISO/IEC 13211-1) to be altered only for the preparation for
execution of all the bodies of the module M.

The arguments In_char, and Out_char shall satisfy the
same constraints as for the successful execution of the built-in
predicate char_conversion/2 (8.14.5 of ISO/IEC 13211-1)
and Convc shall be altered in the same way.

Character conversions defined in a module interface directive
char_conversion (In.char, Out_char) shall not affect
the syntax of read terms in Prolog and module texts other than
the bodies of the corresponding module.

© ISO/IEC 2000 — All rights reserved

6.2.4.8 Module interface directive set_prolog_flag/2

A module interface directive set_prolog_flag(Flag,
Value) in the module interface of a module M enables
the initial value associated with a Prolog flag to be altered only
for the preparation for execution of all the bodies of the module
M.

The arguments Flag, and Value shall satisfy the same
constraints as for the successful execution of the built-in
predicate set_prolog_flag/2 (8.17.1 of ISO/IEC 13211-1)
and the Value shall be associated with flag Flag in the same
way.

Values associated with flags in a module interface directive
set_prolog_flag (Flag, Value) shall not affect the values
associated with flags in Prolog and module texts other than the
bodies of the corresponding module.

6.2.4.9 Module directive end_module/1

The module directive end module (Name) where Name is an
atom that has already appeared as the argument of a module
directive module/1, specifies the termination of the interface
for the module Name.

NOTE — Unless otherwise so defined module directives are not Prolog
text. Thus op/3, char_conversion/2 and set_prolog_flag/2
are both module directives and directives (see ISO/IEC 13211-1 7.4.2.4,
7.4.2.5 and 7.4.2.9.)

6.2.5 Module body

A module body belonging to a module is Prolog text which
defines user-defined procedures that belong to the module.

A sequence of directives and clauses shall form a body of the
module with name Name if:

a) The first element of the sequence is a directive
body (Name) (6.2.5.1).

b) The last element of the sequence is a directive
end_body (Name) (6.2.5.4).

Directives import/1 and import/2 make visible in the
importing module procedures defined in an exporting or re-
exporting module.

6.2.5.1 Module directive body/1

A module directive body (Name) where Name is an atom
giving the name of a module specifies that the Prolog text
bracketed between this directive and the next end module
directive end_body (Name) belongs to the module Name.
Such procedures shall be visible in all bodies of Name without
name qualification.

6.2.5.2 Directive import/2
A directive import (M, PI) in a body of a module MM where
M is an atom and PI is a predicate indicator, a predicate

indicator sequence or a predicate indicator list specifies that

© ISO/IEC 2000 — All rights reserved

ISO/IEC 13211-2:2000(E)

the module MM imports from the module M all the procedures
designated by PI.

A procedure designated by PI in a import (M,PI) directive
shall be a procedure exported or re-exported by the module M.

No procedure designated by PI shall be a control construct or
a built-in predicate.

6.2.5.3 Directive import/1

A directive import (MI) in a body of a module MM where MI
is an atom, a sequence of atoms, or a list of atoms specifies
that the module MM imports all the procedures exported by the
modules designated by MI. Such procedures shall be visible in
MM without name qualification.

6.2.5.4 Module directive end_body/1

The module directive end_body (Name) where Name is an
atom that has already appeared as the argument of a module
directive body/1 specifies the termination of the Prolog text
belonging to the particular module body of module Name.

The preparation for execution of any module interface shall
set the operator table, character conversion mapping Convc
(see 3.29 of ISO/IEC 13211-1), and Prolog flag values to a
new initial state, determined by the module interface directives
op/3, char_conversion/2, and set_prolog_flag/2 in
the interface of M. This state shall affect only the preparation
for execution of the subsequent bodies of the module M.
The effect of directives op/3, char_conversion/2, and
set_prolog_flag/2 in a body of a module M shall accumulate
during the preparation for execution of the current body and all
subsequent bodies of the module M.

NOTE — A single module may have more than one body. However
module text does not permit the nesting of any module body within
the Prolog text of the body of any module other than the user
module.

6.2.6 Clauses

A clause-term in one of the bodies of a module M of module
text causes a clause of a user-defined procedure to be added to
the module M.

A clause C of a clause-term (= C.) in the body of a module M
shall be an unqualified term which is a clause term whose head
is an unqualified term and shall satisfy the same constraints as
those required for a successful execution of the built-in predicate
assertz (C) (7.4.2) in the context of M, except that no error
referring to modification of a static procedure shall occur. C
shall be converted to a clause h: - t and added to the module
M.

The predicate indicator P/N of the head of C shall not be
the predicate indicator of any built-in predicate, or a control
construct, and shall not be that of any predicate imported into
or reexported by M.

NOTE — If the directive discontiguous/1 is in effect for a

predicate defined in the body of a module, then clauses for that
predicate may appear in separate bodies of the module. The order in

7

ISO/IEC 13211-2:2000(E)

which the clauses are added to the complete database depends on the
order in which the bodies are prepared for execution.

6.2.6.1 Examples

The examples defined in this clause assume the complete
database has been created from module text that includes the
following:

module (utilities).
:- export([length/2, reverse/2]).
:- end_module(utilities).
:- body(utilities).
length(List, Len) :- lengthl(List, 0, N).
lengthl ([], N, N).
lengthl([H | T], N, L) :-
Nl is N + 1,lengthl (T, N1, L).

reverse (List, Reversed) :-
reversel (List, [], Reversed).
reversel([], R,R).
reversel ([H | T], Acc, R) :-
reversel (T, [H | Accl, R).
:-end_body (utilities).

: - module (foo) .
:- end_module (foo) .

: - body (foo) .

:-import (utilities).
p(Y) :- q(X),length(X,Y).
q(l1,2,3,4]).

: - end_body (foo) .
The examples are executed in the context of the module user.

foo:p(X) .

succeeds,

unifying X with 4.
foo:reverse([1,2,3], L).

succeeds,

unifying L with [3,2,1].
utilities:reversel([1,2,3], []1, L).

succeeds,

unifying L with [3,2,1].
foo:reversel([1,2,3]1, [1, L).

existence_error (procedure, foo:reversel).

6.3 Complete database
The complete database is the database of procedures against
which execution of a goal is performed. The procedures in the
complete database are:

a) all control constructs,

b) all built-in predicates,

c) all user-defined procedures.
Each user-defined procedure is identified by a unique qualified

predicate indicator where the module name qualification of the
predicate indicator is the defining module of the procedure.

6.3.1 Visible database

The visible database of a module M is the collection of all
procedures in the complete database that can be activated from

8

M without explicit module qualification and from outside M with
M as calling context.

It includes all built-in predicates and control constructs, all
procedures defined in the bodies of M, all procedures imported
into M, and all procedures re-exported by M.

NOTE — A procedure visible in a module M that is neither a control
construct nor a built-in predicate is either (1) completely defined in the
bodies of M or (2) completely defined in the bodies of some module
MM, exported from MM and imported or reexported into M. Furthermore
the options (1) and (2) are mutually exclusive.

6.3.2 Examples

The following examples use the complete database defined in
6.2.6.1.

The visible database of foo consists of the following procedures:

All built-in predicates and control
constructs.

From foo:
p/1, a/l.

Imported from utilities:
length/2, reverse/2

6.4 Context sensitive predicates

The effect of a context sensitive procedure depends on the
calling context (3.40) in which it is activated.

Metapredicates are predicates denoting procedures one or
more of whose arguments are meta-arguments. If the flag
colon_sets_calling_context has the value true then
activation of the metapredicate will require these arguments to
be unified with terms that require module qualification. The
effect of certain other built-ins which are not metapredicates is
also dependent on the calling context.

When the flag colon_sets_calling._context is true the
calling context can be set explicitly by using the infix operator
*:’. When the flag colon_sets_calling._context is
false some other implementation defined method for explicitly
setting the calling context shall be provided.

6.4.1 Metapredicate built-ins

The following built-in predicates are metapredicates listed with
their metapredicate mode indicators:

a) The database access and modification built-
in predicates clause(:,*), asserta(:), as-
sertz(:), retract(:), abolish(:), and pred-
icate_property(:, *),

b) The logic and control built-in predicates once(:),
\+(:), and

c) The all solutions predicates setof (*,:,*),
bagof (*,:,*), and findall (*,:,*).

© ISO/IEC 2000 — All rights reserved

6.4.2 Context sensitive built-ins
The following built-in predicates are context sensitive:

a) Built-ins affecting the operator table, character con-
version and Prolog flags: op/3, current_op/3,
char_conversion/2, current_char_conversion/2,
set_prolog_flag/2, and current_prolog_flag/2;

b) Built-in predicates that read or write terms:
read_term/3, write_term/3, write_term/2,
write/1l, write/2, writeqg/1l, and writeq/2.

6.4.3 Module name expansion

When the Prolog flag colon_sets_calling_context is
true an argument X of a metapredicate goal MP which occurs
at a position corresponding to a ‘’ in the metapredicate mode
indicator of MP shall be qualified with the module name of
the calling context when MP is activated. An unqualified term
X appearing as a ‘’ argument in a call of a predicate MP in
module M will be replaced by (M:X) in the activation of MP.

When the Prolog flag colon_sets_calling_context is
true the meta-arguments in an unqualified term MP which
represents a metapredicate goal in the calling context of a
module CM shall be module qualified with CM. If the term MP
is module qualified then the meta-arguments shall be module
qualified with the qualifying module of the term.

When the Prolog flag colon_sets_calling_context is
false arguments of a metapredicate goal are not subject to
module qualification. An implementation defined method of
setting the calling context shall be provided.

6.4.4 Examples: Metapredicates
6.4.4.1 colon_sets_calling_context true

These examples on module qualification assume that the Prolog
flag lon_sets_calling_context is true.

The following example illustrates the use of a metapredicate to
obtain context information for debugging purposes.

: - module (trace) .
;- exports (#/1).
:- metapredicate (#(:)).

:- end_module (trace) .
: - body (trace) .
:- op (950, fx, #).

(# Goal) :-
Goal = Module : G,
inform_user (’CALL’, Module, G),
call (Goal),
inform_user ('EXIT’, Module, G).
(# Goal) :-
Goal = Module : G,
inform_user ('FAIL’, Module, Goal),

fail.

inform_user (Port, Module, Goal) :-
write(Port), write(’ '), write(Module),
write(’ calls '), writeg(Goal), nl.

: - end_body (trace) .

© ISO/IEC 2000 — All rights reserved

ISO/IEC 13211-2:2000(E)

:- module (sort_with_errors) .
:- export(sort/2).
:- end_module (sort_with_errors) .
:- body(sort_with_errors).
:- import (trace) .
sort (List, SortedList) :-
sort (List, SortedList, []).
sort([], L,L).
sort ([X|L], RO, R) :-
split(X,L,L1,L2),
sort (L1, RO, R1),
sort (L2, [X|R1l], R).
split(_, [1, [1, [1).
split(x, [Y|L], [Y |L1], L2):-
Y @< X, !,
split(X,L, L2, L2).
split(x, [y | L], [Y |L1], L2):-
Y e< X, !,
split(X,L, L2, L2).
split(x, [y | L], [Y |L1], L2):-
split(X, L, L2, L2).

:- end_body (sort_with_errors) .

The goal:

sort([3,2,1], L).

fails, writing

CALL sort_with_errors calls split(3,[2,1],_A,_B)
FAIL sort_with_errors calls split(3,[2,1],_A,_B).

6.4.4.2 colon_sets_calling_context false

This example illustrates an alternate mechanism for setting the
calling context. Here @/2 is used to set the calling context. G
@ M represents a call of the goal G in the calling context of the
module M.

:-module tools.
:-meta [interpret/1].
:-end_module tools.

:-begin_module tools.

interpret (Goal) :-
calling_context (Module) ,
inter (Goal, Module, Module, Module) .

inter (

Goal,
CallingContextOfCurrentClause,
LookupContextOfGoal
CallingContextOfGoal)

0° o° o° o° of°

inter (true, _, _, _) :- !
inter ((G1,G2), CallingContext, Home, At) :- !,
inter (Gl, CallingContext, Home, At),
inter (G2, CallingContext, Home, At).
inter ((M:G), CallingContext, _, At) :- !,
inter (G, CallingContext, M, At).
inter ((GeM), CallingContext, Home, _) :- !,
inter (G, CallingContext, Home, M) .
inter(calling_context (M), CallingContext, _, _) :-
1
M = CallingContext.
inter (G, _, Home, At):-
functor (G,N,A),

% next find defining module
current_visible (HomeModule, N/A) @ Home,
current_predicate(N/A) @ HomeModule, !,

% fails with BIPS
clause (G, Body) @ HomeModule,
inter (Body, At, HomeModule, HomeModule) .

ISO/IEC 13211-2:2000(E)

inter (G, _, Home, At)
call (Home:G) @ At.

:-end_module tools.

:-module programs.
:-export [mysort/2].
:-end_module programs.

:-begin_module programs.
% dynamic only for debugging reasons
:-dynamic ([app/3,mysort/2,part/4]) .

app ([],L,L).
app ([H|T],L, [H|G]) : -
app (T,L,G) .

mysort ([],[]).
mysort ([G|T],S) :-
part(G,T,L,H),
mysort (L,LS),
mysort (H,HS) ,
app (LS, [G|HS],S) .

part(_, [1,[1,[1).

part(J, [H|R], [H|L],U) :-
H =<J,
|

part (J,R,L,U).

part(J, [H|R],L, [H|U]) : -
H>J,
i

part(J,R,L,U).
:-end_module programs.

:-begin_module daten.
list([7,2,6,5,1]1).
1ist([9,0,4,8,3]).
:-end_module daten.

/* module "user" */

:-import tools.
:-import programs.
:-import daten.

dosort:- interpret (sort).

sort: -
list (X),
write(’unsorted: '), write(X), nl,
mysort (X,Y),
write(’sorted:
fail.

sort.

'), write(Y), nl,

6.5 Converting a term to a clause, and a clause to a
term

Prolog provides the ability to convert Prolog data to and from
code. However the argument of a goal is a term whereas
the complete database contains procedures with the user-defined
procedures being formed from clauses. Some procedures convert
a term to a clause, while others convert a clause to a
corresponding term. This clause defines how the conversion is
to be carried out in the presence of modules.

10

6.5.1 Converting a term to the head of a clause

A term T can be converted with M as calling context to a
predication which is the head H of a clause with defining
module MM:

a) The associated unqualified term (6.1.1.2) UT of (M:T) is
converted to a predication H as in 7.6.1 of ISO/IEC 13211-1:

b) The defining module MM for the predication is the
qualifying module 6.1.1.3 of (M:T).

6.5.2 Converting a module qualified term to a body

In the calling context of a module M with given defining module
DM a term T is converted to the body of a clause in a sequence
of steps.

a) The term T is module qualified with the name of the
calling context to give M:T;

b) The term M:T is simplified (6.5.2.1) to reduce repeated
module qualification giving a term RT.

c¢) The simplified term RT is converted to a body BT in the
calling context of M with defining module DM (6.5.2.2).

d) The body BT is further simplified to remove redundant
module qualifications (6.5.2.3).

6.5.2.1 Simplifying a module qualified term

A module qualified term M: T is simplified to a reduced module
qualified term RT as follows:

a) If T is a variable then RT is M: T,

b) Else if the principal functor of T is ’:-/2’ or one
of the control constructs (,) /2, (;)/2 or (->)/2, with
first argument A and second argument B, the simplified term
RT is the same functor (respectively, control construct) with
arguments RA and RB obtained by simplifying the qualified
terms M:A and M:B respectively.

c) Else if the principal functor of T is (:), first argument
MM, second argument TT, the term MM:TT is simplified to
give RT,

d) Else RT is M:T.

6.5.2.2 Converting a simplified term to a body

If the Prolog flag colon_sets_calling_context has the
value true then in the calling context of a module CM with
defining module DM a simplified (qualified) term T is converted
to a goal G which is the body of a clause:

a) If T is one of the control constructs (,) /2, (;)/2 or
(->) /2, then each argument of T shall be converted to a
goal.

b) Else T is a term with principal functor (:)/2 with

first argument M and second argument TT, and T shall be
converted to a goal G as follows:

© ISO/IEC 2000 — All rights reserved

1) If TT is a variable then G is the control construct
call with argument M:TT.

2) Else if TT is a term whose principal functor is one of
the control constructs, true, fail, !, or throw/1 then
G is the same control construct and the arguments (if any)
of G and TT are identical.

3) Else if TT is a term whose principal functor is
call/1 or catch/3 then G is M:G1l where G1 is the
corresponding control construct and the arguments of G1
and TT are identical.

4) If TT is an atom or compound term whose principal
functor FT does not appear in table 9 of ISO/IEC 13211-1
then G is the goal M:G1 where G1 is a predication whose
predicate indicator is F'T, and the arguments, if any, of G1
and T are identical.

If the Prolog flag colon_sets_calling_context has the
value false then in the calling context of a module CM with
defining module DM a simplified (qualified) term T is converted
to a goal G which is the body of a clause:

a) If T is one of the control constructs (,) /2, (;)/2 or
(->) /2, then each argument of T shall be converted to a
goal.

b) Else T is a term with principal functor (:)/2 with
first argument M and second argument TT, and T shall be
converted to a goal G as follows:

1) If TT is a variable then G is the control construct
call with argument TT.

2) Else if TT is a term whose principal functor is one of
the control constructs, true, fail, !, or throw/1 then
G is the same control construct and the arguments (if any)
of G and TT are identical.

3) Else if TT is a term whose principal functor is call/1
or catch/3 then G is the same control control construct
and the arguments of G and TT are identical.

4) If TT is an atom or compound term whose principal
functor FT does not appear in table 9 of ISO/IEC 13211-1
then G is the goal M:G1 where G1 is a predication whose
predicate indicator is F'T, and the arguments, if any, of G1
and T are identical.

NOTE — In this second case additional implementation specific

conversions (6.5.2.4c) are required to account for the explicit method
of setting the calling context.

6.5.2.3 Removing redundant module qualifications

A body which is a goal G in a defining module DM is reduced
to a goal RG without redundant module qualifications as follows:

a) If G is one of the control constructs (,)/2, (;)/2
or (->)/2, then RG is the same control construct and the
arguments of RG are obtained from those of G be reducing
each argument for redundant module qualifications.

b) If G is a module qualified goal M:G1 and M is the
defining module DM then RG is G1,

¢) Else RG is identical to RG.

© ISO/IEC 2000 — All rights reserved

ISO/IEC 13211-2:2000(E)

6.5.2.4 Further implementation defined conversions

An implementation may perform additional conversions on a
goal, these may include:

a) Removing module qualifications of predications visible in
the defining module.

b) If the flag colon_sets_calling._context has the
value true performing module qualification of the meta
arguments of metapredicates and/or the control constructs
call/1l and catch/3.

c) If the flag colon_sets_calling._context has the
value false performing conversions required by the im-
plementation specific method of setting the calling context.

6.5.3 Converting the body of a clause to a term

A goal G which is a predication with predicate indicator P/N
in the body of a clause of a module M can be converted to a
term T:

a) If the principal functor of G is not (:) /2 and if N is
zero, then T is the atom P.

b) If G is a control construct which appears in table 9 of
ISO/IEC 13211-1, then T is a term with the corresponding
principal functor. If the principal functor of T is call/1,
catch/3 or throw/1 then the arguments of G and T are
identical, else if the principal functor of T is (,)/2 or
(;)/2 or (->)/2 then each argument of G shall also be
converted to a term.

¢) If colon_sets_calling_context is false and G
is an instance of the implementation specific construct that
sets the calling context then G shall be converted to a term T
using to the implementation specific method for conversion.

d) If the principal functor of G is not (:)/2 and N is
not zero then T is a renamed copy of TT where TT is
the compound term whose principal functor is P/N and the
arguments of G and TT are identical.

e) Else if the principal functor of G is (:)/2 with first
argument MM and second argument GG then G is converted to
the term MM:TT, where TT is obtained by converting GG to
a term in the calling context of MM.

The following examples are provided to illustrate the simplifi-
cation of module qualified terms and the conversion of terms to
goals.

Defining module = m, context module = foo.
This would arise in a goal such as
foo:asserta(m:bar(X) :- baz(X)).

In the case where the Prolog flag
colon_sets_calling context is true
the corresponding clause asserted into
module m would be

bar(X) :- foo:baz(X).

(i) Case colon_sets_calling context true.

11

ISO/IEC 13211-2:2000(E)

Module qualified term - - m: (:-(dm:h, (a,ml:b)))
Simplified term - - - (dm:h , (m:a, ml:b))
Clause in dm -- h :- m:a, ml:b.

Module qualified term -- n: ('->’ (X, throw(B))

Simplified term -- '->'(n:X, n:throw(B))

Body -- '->'(call(n:X), throw(B)).
Module qualified term -- m: (’,’ (n:a, b))
Simplified term -- ', (n:a, m:b)

Body (defining module m) -- ’,’(n:a, b).

(ii) Case colon_sets_calling_context false.
@/2 sets the calling context.

Module qualified term -- m:(:- dm:h, (a@qg, ml:b)))
Simplified term -- :- (dm:h, (m:(a@q), ml:b)))
Clause in dm -- h:-a@gqg, ml:b.

Module qualified term -- n: ('->’ (X, throw(B))

‘->'(n:X, n:throw(B))
r->'(call(X), throw(B)).

Simplified term - -
Body - -

B))
B))
)) .

Module qualified term -- n: ('->’"(X@ g, throw(
Simplified term -- "->"(n: (X @q), n:throw(
Body - - /->'(call(X) @ q, throw(B

6.6 Executing a Prolog goal

This clause describes the flow of control through Prolog clauses as a
goal is executed in the presence of module qualification. It is based
on the stack model in clause 7.7 of ISO/IEC 13211-1.

6.6.1 Data types for the execution model

The execution model of module Prolog is based on an execution stack
S of execution states ES. It is an extension of the model in clause 7.7
of ISO/IEC 13211-1, where the extension adds module information.

ES is a structured data type with components:

S_index — A value defined by the current number of components
of S.
decsglstk — A stack of decorated subgoals which defines a

sequence of activators that might be activated during execution.

subst — A substitution which defines the state of the instantiations
of the variables.

BI - Backtrack information: a value which defines how to
re-execute a goal.

The choicepoint for the execution state ES;1; is ES;.
A decorated subgoal DS is a structured data type with components:

activator - A predication P prepared for execution which must
be executed successfully in order to satisfy the goal.

contextmodule - An atom identifying the module in which
the activator is being called.

cutparent — A pointer to a deeper execution state that indicates
where control is resumed should a cut be re-executed.

currstate, the current execution state is top (S). It contains:

a) An index which identifies its position in S, and

12

Table 2 — The execution stack after initialization with the
goal m:goal

S- Decorated Substi- BI

index Subgoal Stack, tution

1 ((m:goal, user, 0), newstackps) , {} nil
newstackgs

b) The current decorated subgoal stack, and
c¢) The current substitution, and
d) Backtracking information.

currdecgsgl, the current decorated subgoal, is top (decsglstk)
of currstate. It contains:

a) The current activator, curract, (this may be a qualified term,)

b) The current context module contextmodule, which gives the
context in which the current decorated subgoal is to be executed,
and

¢) Its cutparent.

BI has value:

nil - Its initial value, or

ctrl - The procedure is a control construct, or

bip - The activated procedure is a built-in predicate, or

(DM, up(CL)) - CL is a list of the clauses of a user-defined

procedure whose predicate is identical to curract, and which are
still to be executed, and DM is the module in whose body these
clauses appear.

6.6.2 Initialization

The method by which a user delivers a goal to the Prolog processor
shall be implementation defined.

A goal is prepared for execution by transforming it into an activator.
If the flag colon_sets_calling_context is true true execution
of a metapredicate requires that all arguments of type ‘:* be module

qualified (6.4.3) with the module name of the calling context prior to
execution (6.6.4f).

The initial value of the calling context is user.

Table 2 shows the execution stack after it has been initialized and is
ready to execute m:goal.

6.6.2.1 A goal succeeds

A goal is satisfied when the decorated subgoal stack of currstate
is empty. A solution for the goal m:goal is represented by the
corresponding substitution .

6.6.2.2 A goal fails

Execution fails when the execution stack S is empty.

© ISO/IEC 2000 — All rights reserved

6.6.2.3 Re-executing a goal

After satisfying an initial goal, execution may continue by trying to
satisfy it again.

Procedurally,
a) Pop currstate from S,

b) Continue execution at 6.6.5.

6.6.3 Searching the complete database

This clause describes how, with lookup module m, the processor locates
a procedure p in the complete database whose predicate indicator
corresponds to a given (possibly module qualified) activator.

6.6.3.1 Searching the visible database

The procedure in the complete database corresponding to a procedure
p (whose principal functor is necessarily not (:)/2) in the visible
database deetermined by a module m is located as follows:

a) If the principal functor of p is a control construct or built-in
predicate then p is the required procedure.

b) If there is a user-defined procedure p with the same principal
functor and arity as p defined in m then p is the required procedure.

c) The selective import, reexport and selective reexport directives
of m are examined; (1) if there is a directive naming p as imported
or re-exported from a module n then search is carried out in the
visible database of n for a procedure p which is exported by n;
(2) else if there is a directive naming a module n as imported or
re-exported then search is carried out in the visible database of n
for a procedure p which is exported by n.

d) Else the search fails.

Procedurally the search in the visible database of a module m for a
user defined procedure p is carried out as follows:

a) If there is a user-defined procedure p with the same principal
functor and arity as p defined in m then p is the required procedure,

b) Else form two sets Open and Closed each initially empty.
¢) Add m to the set Closed.

d) If there is a selective import directive import (n,PI) or a
selective reexport directive reexport (n,PI) where PI includes
p replace Open by the set whose sole member is n,

e) Else create a list S of all the modules that are the subject of
import/1l or reexport/1 directives in m and replace Open by
the set S.

f) If Open is empty the search fails,

g) Else remove a module n from Open and add it to Closed.
h) If there is a user defined procedure g with the same principal
functor and arity as g defined in n and exported by n then q is
the required procedure, and the search terminates,

i) Else if there is a import/2 directive or a reexport/2
directive in n naming p as imported from a module nn and nn

is not on Closed replace Open by the set whose sole element is
nn,

© ISO/IEC 2000 — All rights reserved

ISO/IEC 13211-2:2000(E)

j) Else create the set S of all modules that are the subject of
import/1 or reexport/1 directives in n and add to Open the
elements of S that are on neither Open nor Closed.

k) Continue at 6.6.3.1f.
NOTES

1 Because a module m may not make visible two different procedures
from the same database that would have the same unqualified predicate
indicator (6.2.2) in m no more than one such procedure can be found.

2 Because no more than one procedure can be found the choice of
module from the set Open does not need to be specified.

3 Since importation is idempotent no module needs to be searched
more than once.

4 The provision of an explicit search algorithm in this subclause does
not prescribe that this algorithm shall be implemented by a conforming
processor rather it specifies only the effect of the algorithm.

6.6.3.2 Searching for a given procedure

The processor locates in the complete database with lookup module m
a procedure p corresponding to a given term T.

a) Determine the unqualified term UT and qualifying module LT
associated to (m:T).

b) If the principal functor of UT is a control construct or built-in
procedure p then p is the required procedure.

c) If the principal functor of UT is a user-defined procedure
p (not a control construct or built-in predicate) then the visible
database (6.3.1) of LT is searched for a procedure p. If no such
procedure exists the search fails.

6.6.4 Selecting a clause for execution
Execution proceeds in a succession of steps.

a) Using the visible database given by the module contextmod-
ule of the current decorated subgoal currdecsgl, the processor
searches the complete database (6.6.3.2) for a procedure p whose
(possibly module qualified) predicate indicator corresponds with the
(possibly qualified) identifier and arity of curract.

b) If no procedure is found in step 6.6.4a, then action depends
on the value of the flag unknown:

error - There shall be an error
existence_error (procedure, M:PF)

where M is the lookup module contextmodule and PF is the
predicate indicator of the (possibly qualified) curract, or

warning - An implementation dependent warning shall be
generated and curract replaced by the control construct fail, or

fail - curract shall be replaced by the control construct
fail.

c¢) If curract identifies a user-defined predicate set DM to the
module name of the module in whose body the predicate is defined.

d) If the flag colon_sets_calling.context is true set
contextmodule in the current decorated subgoal to the qualifying
module associated to (contextmodule:curract) and set
curract to the associated unqualified term.

13

ISO/IEC 13211-2:2000(E)

e) If the flag colon_sets_calling.context is false per-
form any implementation actions required to set the value of
contextmodule.

f) If the flag colon_sets_calling._context is true ensure
that any meta-arguments of curract have been module qualified
(6.4.3).

g) If p is a control construct (true, fail, call, cut, conjunction,
disjunction, if-then, if-then-else, catch, throw) then BI is set to
ctrl and execution continues according to the rules defined in

(6.7).

h) If p is a built-in predicate BP then BI is set to bip and
continue execution at 6.6.7.

i) If p is a user-defined procedure then DM is set to the module
in which the procedure is defined and BI is set to (DM, up (CL)),
where CL is a list of the current clauses of p of the procedure;
Continue execution at 6.6.6

NOTE — After the execution of these steps curract is not module
qualified.

6.6.5 Backtracking

A procedure backtracks (1) if a goal has failed, or (2) if the initial
goal has been satisfied, and the processor is asked to re-execute it.

Procedurally, backtracking shall be executed as follows:
a) Examine the value of BI for the new currstate.

b) If BI is (DM, up(CL)) then p is a user defined procedure
remove the head of CL and continue at 6.6.6.

c) If BI is bip then p is a built-in predicate, continue execution
at 6.6.7.

d) If BI is ctrl the effect of re-executing it is defined in 6.7.
e) If BI is nil then the new curract has not been executed,
continue execution at 6.6.4.

6.6.6 Executing a user-defined procedure:

Procedurally a user-defined procedure shall be executed as follows:

a) If there are no (more) clauses for p then BI has the value
(DM, up([])) and continue execution at 6.6.6.1,

b) Else consider clause ¢ where BI has the value (DM, up([c
| cT])) with the calling context DM.

c) If the head of ¢ and curract are unifiable then it is selected
for execution, and continue execution at 6.6.6 e,

d) Else BI is replaced by a value (DM, up(CT)) and continue
execution at 6.6.6 a.

e) Let ¢’ be a renamed copy of the clause ¢ of up([c | -1).

f) Unify the head of ¢’ and curract producing a most general
unifier MGU.

g) Apply the substitution MGU to the body of c’.

h) Make a copy CCS of currstate. It contains a copy of the
current goal which is called CCG.

14

i) Apply the substitution MGU to CCG.

j) Replace the current activator of CCG by the MGU modified body
of c’.

k) Set BI of CCS to nil.

1) Set the substitution on CCS to a composition of the substitution
of currstate and MGU.

m) Set cutparent of the new first subgoal of the decorated
subgoal stack of CCS to the current choice point.

n) Set the contextmodule of the new first subgoal of the
decorated subgoal stack to DM.

0) Push CCS on to S. It becomes the new currstate and the
previous currstate becomes its choicepoint.

p) Continue execution at 6.6.4.

6.6.6.1 Executing a user-defined procedure with no more
clauses

When a user-defined procedure has been selected for execution 6.6.4
but has no more clauses, i.e. BI has a value (DM, up([])), it
shall be executed as follows:

a) Pop currstate from S.

b) Continue execution at 6.6.5.

6.6.7 Executing a built-in predicate

Procedurally a built-in predicate shall be executed as in section 7.7.12
of ISO/IEC 13211-1.

For the built-in predicates that have meta-arguments, the database
access and modification built-in predicates — clause(:,*), as-
serta(:), assertz(:), retract(:), abolish(:), and
predicateproperty (:, *), the logic and control built-in predicates
once(:), \+(:), and the all solutions predicates setof (*,:,*),
bagof (*,:,*), and findall(*,:,*), the current decorated
subgoal gives access to the calling context.

For the builtin predicates which are context sensitive
(6.42) - op/3, current_op/3, char_conversion/2,
current._char_conversion/2, set.prolog.flag/2, cur-
rent_prolog.flag/2, read_term/3, write_term/3,
write_term/2, write/1, write/2, writeqg/1, and writeq/2,
the current decorated subgoal gives access to the calling context.

6.7 Executing a control construct

This clause describes the modifications required to the descriptions of
the execution model of ISO/IEC 13211-1. For all control constructs
not specifically described, the model is unchanged.

6.7.1 call/1
6.7.1.1 Description

call(G) is true in the calling context of module CM iff G represents
a goal which is true in the context of CM. Procedurally, a control
construct call, denoted by call (G), shall be executed as follows:

a) Make a copy CCS of currstate.

© ISO/IEC 2000 — All rights reserved

b) Set BI of CCS to nil.

c¢) Pop currdecsgl (= (call(G), CM, CP)) from
currentgoal of CCS.

d) If the term G has as associated unqualified term a variable,
there shall be an instantiation error,

e) Else if the term G has as associated unqualified term a number,
there shall be a type error,

f) Else in the calling context of the module CM and defining
module CM convert the term G to a goal Goal with calling context
M, the qualifying module of (CM:G) (6.5.2).

g) Let NN be the choice point of currstate.

h) Push (Goal, M, NN) on to currentgoal of CCS.
i) Push CCS onto S.

j) Continue execution at 6.6.4.

k) Pop currstate from S.

1) Continue execution at 6.6.5.

call (G) is re-executable. On backtracking, continue at 6.7.1.1k.

6.7.1.2 Template and modes

call (+callable_term).

6.7.1.3 Errors

a) G is a variable
— instantiation_error.

b) The qualifying module of (CM:G) cannot be determined (6.1.1).
— instantiation_error.

¢) G is neither a variable nor a callable term
— type_error (callable, G).

d) G cannot be converted to a goal
— type_error (callable, G).

6.7.1.4 Examples
call (m:X:foo) .

type_error(callable, m:X:foo) .

6.7.2 catch/3

The catch and throw control constructs enable execution to continue
after an error without intervention from the user.

6.7.2.1 Description

catch(G,C,R) is true in the calling context of module CM iff (1)
call(G) is true in the context of CM, or (2) the call of G is
interrupted by a call of throw/1 whose argument unifies with C,
and call(R) is true in the context of CM. Procedurally, a control
construct catch, denoted by catch(G,C,R) is executed as follows:

© ISO/IEC 2000 — All rights reserved

ISO/IEC 13211-2:2000(E)

a) Make a copy CCS of currstate.

b) Replace curract of CCS by call (G).
c) Set BI to nil.

d) Push CCS onto S.

e) Continue execution at 6.6.4.

f) Pop currstate from S.

g) Continue execution at 6.6.5.

catch(G,C,R) is re-executable.
6.7.2.11.

On backtracking, continue at

6.7.2.2 Template and modes

catch(?callable_term, ?term, ?term)

6.7.2.3 Errors

a) G is a variable
— instantiation_error.

b) The qualifying module of (CM:G) cannot be determined (6.1.1).
— instantiation_error.

¢) G is neither a variable nor a callable term
— type_error (callable, G).

6.7.3 throw/1

6.7.3.1 Description

throw (B) is a control construct that is neither true nor false. It
exists only for its procedural effect of causing the normal flow of
control to be transferred back to an existing call of catch/3 (see

6.7.2).

Procedurally, a control construct throw, denoted by throw (B), shall
be executed as follows:

a) Make a renamed copy CA of curract, and a copy CP of
cutparent.

b) Pop currstate from S.

c) It shall be a system error (7.12.2j of ISO/IEC 13211-1) if S
is now empty,

d) Else if (1) the new curract is a call of the control construct
catch/3, and (2) the argument of CA unifies with the second
argument C of the catch with most general unifier MGU, and (3)
the cutparent is less than CP, then continue at 6.7.3.1b.

e) Apply MGU to currentgoal.

f) Replace curract by call (R), where R is the third argument
of the control construct catch/3 from 6.7.3.1d.

g) Set BI to nil.

h) Continue execution at 6.6.4.

6.7.3.2 Template and modes

throw (+nonvar)

15

ISO/IEC 13211-2:2000(E)

6.7.3.3 Errors

a) B is a variable
— instantiation_error.

b) B does not unify with the C argument of any call of catch/3
— system_error.

6.8 Predicate properties

The properties of procedures can be found using the built-in
predicate predicate_property(Callable, Property), where
Callable is the meta-argument term Module:Goal (7.2.2). The
predicate properties supported shall include:

static — The procedure is static.

dynamic - The procedure is dynamic.

public - The procedure is a public procedure.

private - The procedure is a private procedure.

built_.in - The procedure is a built-in predicate.

multifile — The procedure is the subject of a multifile directive.

exported - The module Module exports the procedure.

metapredicate (MPMI) - The procedure is a metapredicate,
and MPMTI is its metapredicate mode indicator.

imported-from(From) — The predicate is imported into
module Module from the module From.

defined_in (DefiningModule) - The module with the name
DefiningModule is the defining module of the procedure.

A processor may support one of more additional predicate properties
as an implementation specific feature.
6.9 Flags

The following flag is added to those of 7.11 of ISO/IEC 13211-1.

6.9.1 Flag: colon_sets_calling_context

Possible value: true, false

Default value: Implementation defined

Changeable: No

Description: If the value of this flag is true the operator (:) is used
to set the calling context of a metapredicate goal. Meta-arguments in
a metapredicate goal must be module qualified when the predicate is
activated, with the defining module of the procedure in whose body
they are found. If the value is false some other implementation

defined mechanism by which context sensitive predicates can access
their calling context must be provided.

6.10 Errors

The following errors are defined in addition to those defined in section
7.12 of ISO/IEC 13211-1.

16

6.10.1 Error classification

The following types are added to the classification of 7.12.2 of
ISO/IEC 13211-1.

a) The list of valid types is extended by the addition of
metapredicatemode_indicator. (See 7.12.2 b of ISO/MIEC
13211-1.)

b) The list of valid domains is extended by the addition of
predicateproperty. (See 7.12.2 ¢ of ISO/IEC 13211-1.)

c¢) The list of object types is extended by the addition of module.
(See 7.12.2 d of ISO/IEC 13211-1.)

d) The list of permission types is extended by the addition of
implicit. (See 7.12.2 e of ISO/IEC 13211-1.)

7 Built-in predicates

7.1 The format of built-in predicate definitions

The format of the built-in predicate definitions follows that of ISO/IEC
13211-1.

7.1.1 Type of an argument

The following additional argument types are required:
metapredicatemode_indicator — as terminology.
predicate_property — a procedure property (6.8).
prototype — as terminology.

qualifiedor_unqualified_clause — a clause or term whose
associated unqualified term is a clause.

7.2 Module predicates

The examples provided for these built-in predicates assume the complete
database has been created from the following module text. The flag
colon_sets_calling._context is assumed to have the value true.

:- module (foo) .

;- export(p/1).

: - metapredicate(p(:)).
:- end_module (foo) .

:- module (bar) .
;- export(qg/1).
:- end_module (bar) .

: - module (baz) .
;- export(qg/l) .
:- end_module (baz) .

: - body (foo) .
p(X) :- write(X).
:- end_body (foo) .

: - body (bar) .
:- import (foo, p/1).
g(x) :- a(xX), p(X)
g(X) :- a(X), foo:p(2).
a(l).

: - end_body (bar) .

© ISO/IEC 2000 — All rights reserved

: - body (baz) .
:- import (bar, g/1).
: - end_body (baz) .

7.2.1 current_module/1
7.2.1.1 Description

currentmodule (Module) is true iff Module unifies with the
name of an existing module.

Procedurally currentmodule (Module) is executed as follows:

a) Searches the complete database for all active modules and
creates a set S of all terms M such that there is a module whose
identifier unifies with Module.

b) If a non-empty set is found, then proceeds to 7.2.1.1d,

c) Else the goal fails.

d) Chooses an element of S and the goal succeeds.

e) If all the elements of S have been chosen then the goal fails,

f) Else chooses an element of the set S which has not already
been chosen and the goal succeeds.

current_module (Module) is re-executable.
continue at 7.2.1.1e.

On backtracking,

NOTE — currentmodule (M) succeeds if the interface to M has
been loaded, whether or not any bodies of M may have been prepared
for execution.

7.2.1.2 Template and Modes

current.module (?atom)

7.2.1.3 Errors
a) Module is neither a variable nor an atom

— type_error (atom, Module) .

7.2.1.4 Examples

current_module (foo) .
succeeds.

current_module (fred:sid) .
type_error (atom, fred:sid).
7.2.2 predicate_property/2
7.2.2.1 Description
predicate_property (Prototype, Property) is true in the
calling context of a module M iff the procedure associated with the

argument Prototype has predicate property Property.

Procedurally predicate_property (Prototype, Property) is
executed as follows:

a) Determines the qualifying module of MM of (M:Prototype).

© ISO/IEC 2000 — All rights reserved

ISO/IEC 13211-2:2000(E)

b) Determines the unqualified term T with principal functor P of
arity N associated with (M:Prototype). P/N is the associated
predicate indicator.

c) Searches the complete database and creates a set Setpp of
all terms PP such that P/N identifies a procedure in the visible
database of MM which has predicate property PP and PP is unifiable
with Property.

d) If Setpp is non empty set is proceeds to 7.2.2.1f,

e) Else the predicate fails.

f) Chooses the first element PPP of Setpp, unifies PPP with
Property and the predicate succeeds.

g) If all the elements of Setpp have been chosen the predicate
fails,

h) Else chooses the first element PPP of Setpp that has not

already been chosen, unifies PPP with Property and the predicate
succeeds.

predicate_property (Prototype, Property) is re-executable.
On backtracking, continue at 7.2.2.1g.

The order in which properties are found by predicate_property/2

is implementation dependent.

7.2.2.2 Template and modes

predicate_property (+prototype, ?predicate_property)

7.2.2.3 Errors

a) Prototype is a variable
— instantiation_error.

b) The qualifying module of (M:Prototype) cannot be deter-
mined (6.1.1)
— instantiation_error.

¢) Prototype is neither a variable nor a callable term
— type.error (callable, Prototype).

d) Property is neither a variable nor a predicate property
— domain_error (predicate_property, Property).

e) The module identified by MM does not exist
— existence_error (module, MM).

7.2.2.4 Examples

Goals attempted in the context of the module
bar.

predicate_property (g (X), exported) .
succeeds, X is not instantiated.

predicate_property (p(X), defined_in(S)).
succeeds, S is unified with foo,
X is not instantiated.

predicate_property (foo:p(X), metapredicate(Y)).
succeeds, Y is unified with p(:),
X is not instantiated.

predicate_property (X:p(Y), exported).

17

ISO/IEC 13211-2:2000(E)

instantiation_error.

Goal attempted in the context of the module
baz.

predicate_property (foo:p(X), metapredicate(Y)).
succeeds, Y is unified with p(:),
X is not instantiated.

The following example assumes that the Prolog
flag colon_sets_calling_context has the value true.

bar:predicate_property (p(X), imported_ from(Y)).
succeeds, Y is unified with foo,
X is not instantiated.

7.3 Clause retrieval and information

This clause describes the interaction of the built-in predicate clause/2
with the module system.

The examples provided for these built-in predicates assume that the
complete database has been created from the following module text.

: - module (mammals) .
:- export(dog/0, cat/0, elk/1).
end_module (mammals) .

body (mammals) .

:- dynamic (cat/0) .
cat.

: - dynamic (dog/0) .
dog :- true.

:- dynamic (elk/1) .
elk (X) :- moose (X).

: - dynamic (moose/1) .

legs (4) .

: - end_body (mammals) .
:- module (insects)

:- export (ant/0, bee/0).
end_module (insects) .

body (insects) .
:- dynamic (ant/0) .
ant.

:- dynamic (bee/0) .
bee.

:- dynamic(legs/1) .
legs(6) .

body_type (segmented) .
:- end_body (insects) .
:- module (animals) .

:- exports (limbs/1).
:- end_module (animals) .

body (animals) .
:- import (insects, [ant/0, bee/0]).
:- import (mammals, [dog/0, cat/0, elk/1]).

18

:- dynamic (horns/1) .

limbs (X) :- insects:legs (X).
limbs (X) :- mammals:legs (X).

: - end_body (animals) .

7.3.1 clause/2
7.3.1.1 Description

clause (Head, Body) is true in the calling context of a module M
iff:

— The associated unqualified term of (M:Head) is HH, (6.1.1.3),
— The procedure of HH is public, and

— There is a clause in the qualifying module DM of (M:Head)
which corresponds to a term H:- B which unifies with HH : -

Body.

Procedurally, clause(Head, Body) is executed in the calling
context of a module M as follows:

a) Determines the qualifying module DM of (M:Head) (6.1.1.3)
to be searched for the clauses.

b) Determines the unqualified term HH associated with (M:Head).
c) Searches sequentially through each public user-defined procedure
defined in the chosen module and creates a list L of all the terms

clause (H,B) such that:

1) DM contains a clause whose head can be converted with
calling context and defining module DM to a term H and whose
body can be converted with calling context and defining module
DM to a term B,
2) H unifies with HH, and
3) B unifies with Body.

d) If a non-empty list is found, then proceeds to 7.3.1.1f,

e) Else the goal fails.

f) Chooses the first element of the list L, and the goal succeeds.

g) If all the elements of the list L have been chosen then the
goal fails,

h) Else chooses the first element of L that has not already been
chosen, and the goal succeeds.

clause/2 is re-executable. On backtracking, continue at 7.3.1.1g.

7.3.1.2 Template and modes

clause (+term, ?callable_term)

7.3.1.3 Errors

a) Head is a variable
— instantiation_error.

© ISO/IEC 2000 — All rights reserved

b) The qualifying of (M:Head) cannot be determined (6.1.1.3)
— instantiation_error.

c¢) Head is a qualified term and either the associated unqualified
term or qualifying module is a variable
— instantiation_error.

d) Head is neither a variable nor a predication
— type_error (callable, Head).

e) Head cannot be converted to a predication.
— type_error (callable, Head).

f) The predicate indicator Pred of the associated unqualified term
of Head is that of a private procedure
- permission_error (access,
Pred).

private_procedure,

g) The predicate indicator Pred of the associated unqualified term
of Head is that of a procedure imported or re-exported by DM
— permission_error (access, implicit, Pred).

h) Body is neither a variable nor a callable term
— type_error (callable, Body).

i) The module identified by DM does not exist
— existence_error (module, DM).

7.3.1.4 Examples

The examples amplify those of ISO/IEC 13211-1 by illustrating the
effect of the module structure.

Goals attempted in the calling context of the
module insects.

clause(legs(X) , A).
succeeds unifying X with 6
and A with true.

clause (body_type (X), true).
succeeds unifying X with segmented.

Goals attempted in the calling context of the
module animals.

clause(limbs (X) , B).
succeeds unifying B with insects:legs (X)
on re-execution unifies B with mammals:legs (X) .

clause(elk (X), B).
permission_error (access, implicit, elk).

predicate_property(elk(_), defined_in (M)),
clause (M:elk (Y), B).
succeeds, M is unified with mammals,
B is unified with moose(Y).

clause (mammals:elk (X), B).
succeeds, B is unified with
moose (X) .

The following examples are independent of call-
ing context.

clause(insects:legs(X) , A).

succeeds unifying X with 6
and A with true.

© ISO/IEC 2000 — All rights reserved

ISO/IEC 13211-2:2000(E)

clause(insects:M:legs (X), A).
instantiation_error.

The following example assumes that the Prolog
flag colon_sets_calling context has the value true.

insects:clause(legs (X), A).

succeeds unifying X with 6
and A with true.

7.3.2 current_predicate/1
7.3.2.1 Description
current_predicate (PI) is true in the calling context of a module
M, iff PI is a predicate indicator for one of the user-defined procedures
in the visible database of M.
Procedurally, current_predicate (PI) is executed as follows:
a) Searches the visible database of M and creates a set Setspn of
terms A/N such that (1) the visible database contains a user-defined
procedure whose predicate has identifier A and arity N, and (2) A/N
identifies with PI.
b) If a non-empty set is found, then proceeds to 7.3.2.1d,
c) Else the goal fails.

d) Chooses a member of Setqn and the goal succeeds.

e) If all members of Setsny have been chosen, then the goal
fails,

f) Else chooses a member of Setq which has not already been
chosen, and the goal succeeds.

current_predicate (PI) is re-executable. On backtracking continue
at 7.3.2.1e.

The order in which predicate indicators are found by cur-
rent_predicate (PI) is implementation dependent.
7.3.2.2 Template and modes

current_predicate (?predicate_indicator)

7.3.2.3 Errors

a) PI is neither a variable nor a predicate indicator
— type_error (predicate_indicator, PI).

7.3.2.4 Examples

Goal attempted in the calling context of the
module insects.

current_predicate(legs/1).
Succeeds.

Goals attempted in the calling context of the
module animals.

current_predicate (ant/X) .
Succeeds unifying X with 0.

current_predicate(legs/1).

19

ISO/IEC 13211-2:2000(E)

Fails.

The following example assumes that the Prolog
flag colon_sets_calling_context has the value true.

animals:current_predicate (ant/X).
Succeeds unifying X with 0.

7.4 Database access and modification

This clause describes the interaction of the predicates asserta/1,
assertz/1, retract/1 and abolish/1 with the module system.

7.4.1 asserta/l
7.4.1.1 Description
asserta (Clause) is true.

Procedurally, asserta(Clause) is executed in the calling context
of a module M as follows:

a) Determines the unqualified term C and qualifying module CM
of (M:Clause) (6.1.1.3).

b) If C unifies with ’:-’ (Head, Body) proceeds to 7.4.1.1d,
c¢) Else unifies Head with C and true with Body.

d) In the calling context CM converts (6.5.1) the term Head to a
head H with defining module DM.

e) In the calling context CM and with defining module DM converts
(6.5.2) the term Body to a body B.

f) Constructs the clause with head H and body B.
g) Adds the clause to the selected module DM before all existing
clauses of the procedure in DM whose predicate is equal to the

functor of Head.

h) The goal succeeds.

7.4.1.2 Template and modes

asserta(@qualifiedor_unqualified_clause)

7.4.1.3 Errors

a) Head is a variable
— instantiation_error.

b) DM is a variable
— instantiation_error.

c¢) The qualifying module of (M:Clause) cannot be determined
(6.1.1.3)
— instantiation_error.

d) Head cannot be converted to a predication
— type_error(callable, Head).

e) Body cannot be converted to a goal
— type_error (callable, Body).

f) The predicate indicator Pred of Head is that of a static

procedure
— permission_error (modify, static_procedure, Pred).

20

g) The procedure identified by Pred is imported or re-exported
by the module DM
— permission_error (modify, implicit, Pred).

h) The module identified by DM does not exist
— existence_error (module, DM).

7.4.1.4 Examples

Goals attempted in the calling context
of the module mammals.

asserta (moose (fred)) .
succeeds adding moose (fred) to the
module mammals.

asserta(animals:horns (X) :- moose(X)).
succeeds adding horns (X) :- mammals:moose (X)
to the module animals.

Goals attempted in the calling context
of the module animals.

asserta((elk(X) :- new_moose(X))).
permission_error (modify, implicit, elk).

predicate_property(elk(_), defined_in(M)),
asserta(M:elk(joe)) .
succeeds adding elk(joe) to
the module mammals,
M is unified with mammals.

The following examples are independent
of calling context.

asserta (mammals:elk (anna)) .
succeeds adding elk (anna) to
the module mammals.

asserta (M:elk (joe)) .
type_error (instantiation_error) .

asserta (nomodule:foo(3)) .
existence_error (module, nomodule) .

After these examples the complete database could have been created
from the following module text.

: - module (mammals) .
:- export(dog/0, cat/0, elk/1).
:- end_module (mammals) .

: - body (mammals) .

: - dynamic (cat/0).
cat.

: - dynamic (dog/0) .
dog :- true.

:- dynamic (elk/1).
elk (anna) .

elk (joe) .

elk (X) :- moose (X).

: - dynamic (moose/1) .
: - moose (fred) .
legs (4) .

: - end_body (mammals) .

© ISO/IEC 2000 — All rights reserved

module (insects)
:- export (ant/0, bee/0).
end_module (insects) .

:- body (insects) .

:- dynamic (ant/0) .
ant.

:- dynamic (bee/0) .
bee.

:- dynamic(legs/1) .
legs(6) .

body_type (segmented) .
:- end_body (insects) .
:- module (animals) .

:- exports (limbs/1).
end_module (animals) .

body (animals) .
:- import (insects, [ant/0, bee/0]).
:- import (mammals, [dog/0, cat/0, elk/1]).

: - dynamic (horns/1) .

horns (X) :- mammals:moose (X) .
limbs (X) :- insects:legs (X).
limbs (X) :- mammals:legs (X).

:- end_body (animals) .

7.4.2 assertz/1
7.4.2.1 Description
assertz (Clause) is true.

Procedurally, assertz (Clause) is executed in the calling context
of module M as follows:

a) Determines the unqualified term C and qualifying module CM
of (M:Clause) (6.1.1.3).

b) If C unifies with ’:-’ (Head, Body) proceeds to 7.4.2.1d,
c¢) Else unifies Head with C and true with Body.

d) In the calling context CM converts (6.5.1) the term Head to a
head H with defining module DM.

e) In the calling context CM and with defining module DM converts
(6.5.2) the term Body to a body B.

f) Adds the clause to the selected module DM after all existing
clauses of the procedure in DM whose predicate is equal to the
functor of Head.

g) The goal succeeds.

7.4.2.2 Template and modes

assertz(@qualified.or.unqualified_clause)

© ISO/IEC 2000 — All rights reserved

ISO/IEC 13211-2:2000(E)

7.4.2.3 Errors

a) Head is a variable
— instantiation_error.

b) DM is a variable
— instantiation_error.

c) The qualifying module of (M:Clause) cannot be determined

(6.1.1)
— instantiation_error.

d) Head cannot be converted to a predication
— type_error (callable, Head).

e) Body cannot be converted to a goal
— type_error (callable, Body) .

f) The predicate indicator Pred of Head is that of a static
procedure

— permission_error (modify, static_procedure, Pred).
g) The procedure identified by Pred is imported or re-exported
by the module DM

— permission_error (modify, implicit, Pred).

h) The module identified by DM does not exist

— existence_error (module, DM).

7.4.3 retract/1
7.4.3.1 Description
retract (Clause) is true in the calling context of a module M iff:

— The associated unqualified term of (M:Clause) is C with
qualifying module DM (6.1.1.3),

— The complete database contains at least one dynamic procedure
with defining module DM and with a clause Head :- Body which

unifies with C.

Procedurally retract (Clause) is executed in the calling context
of a module M as follows:

a) Determines the unqualified term C and qualifying module L1
(6.1.1.3) associated with (M:Clause).

b) If C unifies with *:-’ (HH, Body) proceeds to 7.4.3.1d,
c) Else unifies C with HH and true with Body.

d) Determines the unqualified term Head and qualifying module
DM of (L1:HH).

e) Chooses the module DM as the defining module to search.

f) Searches sequentially through each dynamic user-defined open
procedure in DM and creates a list L of all the terms clause (H, B)
such that: (1) the module DM contains a clause whose head can
be converted to a term HH and whose body can be converted with
context module DM and defining module DM to a goal B, (2) H
unifies with Head, and (3) B unifies with Body.

g) If a non-empty list is found, then proceeds to 7.4.3.1i,
h) Else the goal fails.
i) Chooses the first element of the list L, removes the clause

corresponding to it from the defining module DM, and the goal
succeeds.

21

ISO/IEC 13211-2:2000(E)

j) If all the elements of the list L have been chosen, then the
goal fails, retract (nomodule: foo (bar)) .
existence_error (module, nomodule) .
k) Else chooses the first element of the list L which has not
already been chosen, removes the clause, if it exists, corresponding
to it from the defining module DM and the goal succeeds. After these examples the complete database could have been created
from the following module text:

retract/1 is re-executable. On backtracking, continue at 7.4.3.1j.

:- module (mammals) .
:- export(dog/0, cat/0, elk/1).
end_module (mammals) .

7.4.3.2 Template and modes

retract (+qualified.or_unqualified_clause)

body (mammals) .

:- d ic(cat/0).
7.4.3.3 Errors ynamic (cat/

a) Head is a variable : - dynamic (dog/0) .
— instantiation_error.

:- dynamic (elk/1).
b) DM is a variable elk (X) :- moose(X).
— instantiation_error.

: - dynamic (moose/1) .
c¢) The defining module of (M:Clause) cannot be determined
6.1.1) legs (4) .
— instantiation_error.

: - end_body (mammals) .

d) Head is not a predication
— type_error(callable, Head).

module (insects)
:- export(ant/0, bee/0).

e) Body cannot be converted to a goal .
) o4 8 end_module (insects) .

— type_error(callable, Body) .

. . . . :- dynamic (ant/0) .
f) The predicate indicator Pred of Head is that of a private ¥ (/0)

procedure

— permission_error (modify, static_procedure, Pred). .- dynamic (bee/0)

bee.
g) The procedure identified by Pred is imported or re-exported

by the module DM

:- dynamic(legs/1) .
—permission_error (modify, implicit, Pred).

legs(6) .
h) The module identified by DM does not exist

— existence_error (module, DM). body_type (segmented) .

end_body (insects) .

7.4.3.4 Examples

module (animals) .
The following examples assume that the complete database has been - exports(li{nbs/ 1).
created from the module text in subclause (7.4.1.4) end_module (animals) .

body (animals) .

Goal attempted in the calling context :- import (insects, [ant/0, bee/0]).
of module mammals. :- import (mammals, [dog/0, cat/0, elk/1]).
retract (cat) . : - dynamic (horns/1) .
succeeds.
limbs (X) :- insects:legs (X).
Goal attempted in the calling context of limbs (X) :- mammals:legs (X) .

module animals.)
: - end_body (animals) .
predicate_property(ant, defined_in(M)),
retract (M:ant) .
succeeds.

7.4.4 abolish/1

Goals independent of calling context.

7.44.1 Description

retract (animals:dog) .

succeeds. abolish (Pred) is true.
retract (M:cat) . Procedurally, abolish (Pred) is executed in the calling context of
type_error (instantiation_error) . a module M as follows:

22 © ISO/IEC 2000 — All rights reserved

ISO/IEC 13211-2:2000(E)

a) Determines the qualifying module DM of (M:Pred). succeeds removing insects:bee
from the complete database.
b) Determines the unqualified term PI of (M:Pred).
abolish(X:legs/2)
c) If the module DM defines a dynamic procedure whose predicate instantiation_error.

indicator is PI, then proceeds to 7.4.4.le,
Goal attempted in the calling context

d) Else the goal succeeds. of module animals.

abolish(dog/0) .

e) Removes from the module DM the procedure specified by PI
) v P P ¥ permission_error (modify, implicit, dog/0).

and all its clauses, and the goal succeeds.

7.4.4.2 Template and modes

abolish(e@predicate_indicator)

7.4.4.3 Errors

a) Pred is a variable
— instantiation_error.

b) DM is a variable
— instantiation_error.

c¢) The qualifying module DM of (M:Pred) cannot be determined
(6.1.1).
—-instantiation_error.

d) PI is a term Name/Arity and at least one of Name, or
Arity is a variable,
— instantiation_error.

e) PI is neither a term nor a predicate indicator
—type_error (predicate_indicator, PI).

f) PI is a term Name/Arity and Arity is neither a variable
nor an integer
— type_error (integer, Arity).

g) PI is a term Name/Arity and Name is neither a variable
nor an atom
— type_error (atom, Name) .

h) PI is a term Name/Arity and Arity is an integer less than
zero
— domain_error (not_less_than_zero, Arity).

i) PI is a term Name/Arity and Arity is an integer greater
than the implementation defined integer max_arity
— representation_error (max.arity) .

j) The predicate indicator PI is that of a procedure which is static
- permission_error (modify, static_procedure,
Pred) .
k) PI is a term Name/Arity and the procedure identified by
Name is imported or re-exported by DM
— permission_error (modify, implicit, Name).
1) The module identified by DM does not exist
— existence_error (module, DM).

7.4.4.4 Examples

Goals attempted in the calling context

of module insects.

abolish (bee/0) .

© ISO/IEC 2000 — All rights reserved 23

ISO/IEC 13211-2:2000(E)

ICS 35.060

Price based on 23 pages

© ISO/IEC 2000 — All rights reserved

